Proposed Retail Development

Rochester, New Hampshire

Prepared for	G.B. New England 2, LLC 14 Breakneck Hill Road, Suite 101 Lincoln, Rhode Island 02865 401 721 1600
Prepared by	Wanasse Hangen Brustlin, Inc. Transportation, Land Development, Environmental Services Six Bedford Farms Drive, Suite 607 Bedford, New Hampshire 03110 603 644 0888
Project No.	51990.35

Proposed Retail Development

Rochester, New Hampshire

Prepared for

G.B. New England 2, LLC Lincoln, Rhode Island

Prepared by **W**/Vanasse Hangen Brustlin, Inc. Bedford, New Hampshire

November 2010

Table of Contents

Τá	able of Contents	i
1.	Introduction	1
2.	Existing Conditions	3
	Description of Contributing Areas Table 1: Existing Conditions: Drainage Area Characteristics Summary Soil Conditions Table 2: Soil Types Existing Hydrologic Flow Patterns	3 3 3 4 4
3.	Proposed Conditions	5
	Description of Contributing Areas Table 3: Proposed Conditions: Drainage Area Characteristics Summary Proposed Hydrologic Flow Patterns	5 5 5
4.	Methodology & Design Criteria	7
	Hydrologic Model Description Hydraulic Calculations (Storm Drain Piping System) Storm Water Detention Table 4: Detention Basin Characteristics Summary Outlet Control Structure Riprap Outlet Protection	7
5.	Storm Water Management Impacts/Conclusion	10
	Storm Water Quantity Mitigation Table 5: Peak Storm Water Runoff Rate Summary Storm Water Quality Mitigation – Best Management Practices (BMP's) Erosion Control Measures Conclusion	
6.	Figures	14
	Figure 1: Site Location Map (USGS) Figure 2: Proposed Site Layout Figure 3: Existing Conditions Drainage Area Map Figure 4: Proposed Conditions Drainage Area Map	

Appendix A: Hydrologic Calculations
Existing Conditions Proposed Conditions
Appendix B: Hydraulic Calculations
Storm Drain Piping Calculations Riprap Sizing Calculations
Appendix C: Support Data
Base Calculations (GRV, WQV, & WQF) BMP Worksheets FEMA Floodplain Maps Rainfall Data

1 Introduction

The 6.6-acre Site is located along North Main Street in Rochester, New Hampshire (see Figure 1: Site Location Map). The Site is bounded by a restaurant to the north, fuel facility to the south, a vacant lot to the east, and North Main Street to the west. The Site is located within the surface watershed of the Cocheco River. Wetland Resources on the Site include wetlands and a perennial stream.

The Site is presently occupied by a car dealership. Under existing conditions, untreated storm water runoff sheet flows overland to existing drainage swales located in the northern and southern portions of the site, as well as to the wetlands to the east. The stormwater from each area eventually discharges to the Cocheco River.

The proposed redevelopment of the site includes the construction of a new 13,225 SF CVS/pharmacy and a secondary 8,025 SF retail building, which will include paved parking areas, landscaping, drainage improvements and other infrastructure. (see Figure 2: Proposed Project Layout). Under proposed conditions, stormwater runoff will be collected by a series of deep-sump hooded catch basins which will direct the stormwater to a gravel wetland for water quality. Wherever possible existing drainage and grading patterns were maintained in the proposed design. Additionally, water quality and quantity control measures such as pre-treatment and a gravel wetland have been designed to protect the surrounding natural resources from potential storm water runoff impacts.

A hydrologic model was developed to evaluate the existing and proposed drainage conditions on the Site. The results of the analyses indicate that there is no increase in peak discharge rates between the pre- and post-development conditions for the 2, 10, and 50 year storm events. The pre- and post-development peak discharge rates are presented in the Storm Water Management Impacts Section of this report.

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

2 Existing Conditions

The following report has been prepared by Vanasse Hangen Brustlin, Inc. (VHB) to provide a brief description of existing and proposed drainage areas, design methodology, soil characteristics, and a summary of peak discharge rates for the project area.

Description of Contributing Areas

The study area for the development is located within the Cocheco River watershed (see Figure 3, Existing Conditions: Drainage Area Map). The existing drainage area is approximately 4.5-acres in size and is relatively flat with elevations ranging from 223 feet up to 232 feet. The area is currently developed and ground cover consists of compacted gravel, pavement, rooftop, and minimal landscaping.

The study area consists of one drainage area that discharges into the discharge point. The discharge point includes the wetlands encompassing the developed area, which ultimately discharge to the Cocheco River

Table 1 summarizes the study area and its characteristics.

Discharge Point		Sub Area(s)		Area (Acres)	Tc (Min.)	CN
1	Existing Wetlands	1S	Description	4.5	6.0	76
Total				4.5	n/a	76*

Table 1: Existing Conditions: Drainage Area Characteristics Summary

Soil Conditions

A Site Specific Soil Survey was conducted by a Certified Soil Scientist at Vanasse Hangen Brustlin, Inc. to determine on-site soil types in accordance with the New Hampshire Supplement of the Site-Specific Soil Mapping Standards for New Hampshire and Vermont, Version 3.0, dated December 2006 Special Publication #3 of the Society of Soil Scientists of Northern New England. A Site Specific Soil Map and Report were prepared in accordance with these standards. Table 2, Soil Types, lists the designations, names, and groups of the soils located within the study area. The Appendices contains a copy of the soil mapping and soil types found within the study area.

Table 2: Soil Types

ion rypes		
Soil Designation	Soil Name	Soil Group
299A	Udorthent (Paved Parking Lot)*	A
299B	Udorthent (Gravel Parking Lot)*	А
299C	Udorthent (Regraded/Trash)*	А
313B	Deerfield (Regraded/Trash)*	В

*Soils exhibit profile characteristics of a Hinckley.

Existing Hydrologic Flow Patterns

Storm water runoff from the existing study area generally flows to the north and east, away from North Main Street, towards the existing wetlands. All of the runoff from the site ultimately flows to the Cocheco River.

Description of Contributing Areas

The proposed development for the study area includes the construction of a 13,225 SF pharmacy and a secondary 8,025 SF retail building.. The buildings will be surrounded by parking facilities, landscaping, drainage improvements, and erosion control measures (see Figure 4, Proposed Conditions: Drainage Area Map).

The proposed conditions sub-areas are comprised of the same 4.5 acre study area represented in the existing conditions drainage analysis. The proposed development will remove approximately 1.2 acres of impervious cover (i.e. pavement, gravel parking, roofs, etc), which shall be re-vegetated, resulting in an overall reduction of the impervious area.

Table 4 summarizes the proposed sub areas and their characteristics.

Discharge Point		Sub Are	Sub Area(s)		Tc (Min.)	CN
1	Existing Wetlands	11S	Proposed landscaping and existing wooded area	2.1	6.0	44
		12S	Proposed rooftop and pavement	2.4	6.0	84
Total				4.5	n/a	65*

Table 3: Proposed Conditions: Drainage Area Characteristics Summary

* Weighted CN Value

Proposed Hydrologic Flow Patterns

The proposed development has been designed to direct the storm water runoff from the site's impervious areas into a gravel wetland. Runoff from the remaining areas within the study area will generally maintain their existing flow patterns.

Runoff from the proposed impervious areas will be collected by deep-sump hooded catch basins and directed into the proposed closed drainage pipe system. The system will discharged to a gravel wetland for water quality treatment.

The proposed development will eliminate approximately 1.2 acres of impervious area to the studied watershed. As a result, the peak storm water runoff rates decrease from pre- to post-development conditions.

Methodology & Design Criteria

VHB used two separate methodologies to evaluate the hydrologic and hydraulic impacts for proposed development's storm water runoff. VHB analyzed the proposed development's hydrologic impacts using the Soil Conservation Service (SCS) Technical Release 20 (TR-20) methodology and analyzed the development's hydraulic characteristics using the Rational Method to determine the flow rates used in the storm drain piping calculations. The following section summarizes the design parameters/constraints that were used during the drainage design for this development under the SCS and Rational Methodologies. Additionally, this section summarizes the methodology used for the development's proposed erosion control and storm water treatment methods.

Hydrologic Model Description

VHB analyzed the proposed developments storm water runoff impacts using the SCS TR-20 methodology. The hydrologic program HydroCAD, as developed by Applied Microcomputer System, was utilized to compute and develop the storm water runoff model. HydroCAD's SCS TR-20 program is designed to model complex watersheds, such as the watershed analyzed in this report. The complexity of the watershed has been based on multiple land uses (surface conditions) with varying soil conditions and inter-connected sub-watersheds reflecting complex hydrologic flow patterns.

Design Storms

VHB analyzed the proposed storm water impacts for the 2, 10, and 50-year design storms. These rainfall events are based on a 24-hour storm duration using a Type III distribution curve. The appendices contain copies of the rainfall data charts used in the calculations.

Curve Number

VHB developed weighted curve numbers for each sub-area based on the different ground covers and hydrologic soil group types found within each area. The curve numbers were based on the SCS TR-55 methodology and are included in hydrologic

calculations. For proposed areas of disturbance, including lot development, the hydrologic condition for woods, meadows, or pastures was assumed to be "good."

Travel Times & Time of Concentration

VHB calculated the Travel Times (Tt) and the Time of Concentrations (Tc) for each of the individual sub-areas using the hydraulically most distant point within each area. Sheet flow was limited to 100 ft and a minimum time of 6 minutes was used in the calculations. The Tt's and Tc's were based on SCS TR-55 methodology and are included in hydrologic calculations.

Hydraulic Calculations (Storm Drain Piping System)

VHB used the rational method to develop the flows used in the design the development's subsurface storm drain piping system. The drainage system was sized based on a 25 year design storm under pressurized flow conditions. VHB used the following design parameters and criteria to design the system:

Minimum Pipe Size:	12 inches
HDPE Pipe Coefficient of Friction:	0.011
Minimum Time of Concentration (Tc):	6 minutes
Runoff Coefficient:	0.2 open space
Runoff Coefficient:	0.9 pavement and roofs

The storm drain piping calculations are included in the appendices.

Storm Water Detention

The proposed development decreases the amount of impervious area from that of the existing conditions; as a result, the runoff curve numbers will decrease for the proposed conditions. The lower curve numbers will decrease the calculated storm water runoff rate from that of the existing site, therefore, storm water detention is not required for this project.

Gravel Wetland Routing

The gravel wetland was designed to treat a minimum Water Quality Volume (WQV), which constitutes 1" of runoff from the system area.

The gravel wetland outlet structure was designed such that there would be limited outflow up to the WQV. This was accomplished by setting the elevation of an internal weir above the maximum 2-year storm event elevation

Refer to the appendices for further information and design calculations.

	Shaver Wedana Onarableholdos Oannary				
Characteristic		Proposed			
Storage Volume (cf)		7,880 CF			
Max. Storage Height (ft)		3.0 feet			
Peak Water Elevation 2 Year		227.07'			
	10 Year	227.31'			
	50 Year	227.44'			

Table 4:Gravel Wetland Characteristics Summary

Outlet Control Structure

The storm water that discharges from the gravel wetland will be controlled through an outlet control structure. The outlet control structure has been designed to maintain appropriate water levels to ensure proper water quality control.

The gravel wetland has also been designed with an overflow outlet to handle emergency overflow conditions (i.e. malfunctioning or clogging of inlets) and consists of an emergency riprap stone-protected overflow spillway set below the top of the proposed berm.

Details of the Outlet Structure and Overflow Spillway are shown on the Detail Sheets of the project's Site Plans.

Riprap Outlet Protection

VHB sized the riprap outlet protection using Chapter 4, Section 4-6.6, pp. 172 to 174, of the <u>New Hampshire Stormwater Manual</u>, <u>Volume 2</u>, <u>Post-Construction Best</u> <u>Management Practices Selection & Design</u>, NHDES (December 2008). The following design parameters represent the minimum acceptable riprap apron dimensions used for design (refer to the appendices for design computations):

Apron Width:	≥10 feet
Apron Length:	≥10 feet
Median Stone Diameter:	0.5 feet
Depth of Stone:	6 inches (minimum)

Storm Water Management Impacts/Conclusion

Storm Water Quantity Mitigation

Under the proposed conditions, the peak flow rates were calculated for the 2, 10, and 50 year storm events. Due to the reduction in impervious area, the peak runoff rates for the proposed conditions are anticipated to decrease over the existing condition rates. The proposed development will incorporate a storm water collection system that will capture runoff from impervious areas by means of deep sump (4' deep) catch basins and will then direct runoff to the proposed gravel wetland.

The outlet control structure for the gravel wetland includes restrictive outlet control devices and an emergency overflow spillway. The outlet structure will meter outflow rates from the gravel wetland to ensure appropriate water quality levels., Table 5 provides a summary of the peak storm water runoff rates from the proposed development.

Table 5:Peak Storm Water Runoff Rate Summary

		F	Peak Flow for Given Storm (cfs		rm (cfs)
Discharge Point		Condition	2-yr	10-yr	50-yr
1	Existing Wetlands	Existing Proposed	4.93 2.14	10.19 6.50	16.16 10.36

Storm Water Quality Mitigation – Best Management Practices (BMP's)

The proposed Storm Water Management System contains several Best Management Practices (BMP's) that will provide treatment of site generated storm water runoff. The proposed BMP's are described below:

Catch Basins with Sumps

Storm Water from the paved surfaces on-site will be collected in deep sump (4-foot) catch basins. Catch basin sumps are effective pollution control devices for removal of large particulate and adsorbed pollutants. Catch basins with sumps are designed to collect sediment particles that are the largest constituents of the pollutant load in urban runoff. Regular maintenance and cleaning of catch basins is required to assure adequate performance of these structures.

Gravel Wetlands

A gravel wetland is designed to treat the water quality volume and control peak flows for the analyzed storm events. The gravel wetland consists of two cells constructed of stone and soil layers, connected by a series of solid and perforated pipes. The gravel wetland is designed to maintain standing water in the system. A sediment forebay is provided upstream of the gravel wetland to remove sediments prior to entering the treatment system.

Energy Dissipators

Energy dissipators (i.e. riprap stone protection) will be constructed below outlets of all pipes in the storm water management system. The energy dissipators will allow the concentrated runoff from the drainage system to be discharged at non-erosive velocities to protect the receiving water resources. The appendices contain design information and calculations for the energy dissipators.

Erosion Control Measures

Temporary Erosions Control

During construction of the proposed development, the contractor shall be responsible for installation and maintenance of temporary sedimentation and erosion control measures to prevent off-site tracking and waterborne loss of earth sediment and debris. The specific measures proposed as a part of the project plan are shown in the Site Plan Package on the Sedimentation and Erosion Control Plan and the Erosion Control Details.

Removal of temporary erosion control measures will be prohibited until paving has been installed and vegetation (grass) is well established.

Permanent Erosion Control

At the completion of construction, all soils will be permanently stabilized by one or more of the following measures:

- Parking/Access: Driveways, parking areas and access roads will be stabilized with bituminous concrete pavement.
- Landscaped Areas: All disturbed areas, not permanently stabilized by pavement or buildings, will be covered with bark mulch, stone, sod or a minimum of six (6) inches of topsoil and seeded.
- Pipe Outlets: Scour protection (riprap) shall be constructed at the headwall outlet to prevent scouring.

Additionally, all catch basins will be constructed with deep sumps to collect sediment from parking areas and access roads.

Conclusion

By reducing the impervious areas on the site, the proposed development results in no impacts on peak storm water runoff rates. Furthermore, storm water quality issues can be addressed through the proposed implementation of standard practices (i.e. gravel wetlands, deep sump catch basins], etc) that are accepted by the NH Department of Environmental Services Water Supply and Pollution Control Division.

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

6 Figures

- ▶ Figure 1: Site Location Map (USGS)
- ➢ Figure 2: Proposed Site Layout
- > Figure 3: Existing Conditions Drainage Area Map
- > Figure 4: Proposed Conditions Drainage Area Map

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

Site Location Map Proposed Retail Development 301 N. Main Street Rochester, New Hampshire -Vanasse Hangen Brustlin, Inc.

Figure 1

Figure 2

Proposed Site Layout Proposed Retail Development North Main Street Rochester, New Hampshire

"SITE-SPECIFIC SOIL MAPPING STANDARDS FOR NEW HAMPSHIRE & VERMONT". THIS MAP PRODUCT IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOIL SURVEY. IT IS A SPECIAL PURPOSE PRODUCT, INTENDED FOR USE IN THE DEVELOPMENT OF A COMMERCIAL BUILDING AND STORMWATER MANAGEMENT PRACTICES TO BE CONSTRUCTED ON THE SITE. IT WAS PRODUCED BY A CERTIFIED SOIL SCIENTIST AND IS NOT A PRODUCT OF THE USDA NATURAL RESOURCES CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT PREPARED BY THE CERTIFIED SOIL SCIENTIST THAT IS MEANT TO ACCOMPANY THIS MAP.

Proposed Retail Development 301 N. Main Street Rochester, New Hampshire

Appendix A: Hydrologic Calculations

- Existing Conditions
- Proposed Conditions

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

Existing Conditions

EXIST CONDITIONS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.030	43	Woods/grass comb., Fair, HSG A (1S)
0.300	65	Woods/grass comb., Fair, HSG B (1S)
1.460	76	Gravel roads, HSG A (1S)
1.510	98	Paved parking, HSG A (1S)
0.240	98	Roofs, HSG A (1S)
4.540		TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EXIST SUBCATCHMENTRunoff Area=4.540 ac 38.55% Impervious Runoff Depth>0.90" Flow Length=370' Tc=6.0 min CN=76 Runoff=4.93 cfs 0.341 af

Link 1L: EXIST WETLANDS

Inflow=4.93 cfs 0.341 af Primary=4.93 cfs 0.341 af

Total Runoff Area = 4.540 ac Runoff Volume = 0.341 af Average Runoff Depth = 0.90" 61.45% Pervious = 2.790 ac 38.55% Impervious = 1.750 ac

Summary for Subcatchment 1S: EXIST SUBCATCHMENT

Runoff = 4.93 cfs @ 12.10 hrs, Volume= 0.341 af, Depth> 0.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=2.96"

Area	(ac) (CN Des	cription			
0	.240	98 Roo	ofs, HSG A			
1	.460	76 Gra	vel roads,	HSG A		
1	.510	98 Pav	ed parking	, HSG A		
1	.030	43 Wo	ods/grass o	comb., Fair,	, HSG A	
0	.300	<u>65 Wo</u>	ods/grass o	comb., Fair,	, HSG B	
4	.540	76 We	ighted Ave	rage		
2	.790	61.4	45% Pervic	us Area		
1.	.750	38.	55% Imper	vious Area		
_						
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.7	50	0.0200	1.15		Sheet Flow, A-B	
					Smooth surfaces n= 0.011 P2= 2.96"	
1.5	250	0.0200	2.87		Shallow Concentrated Flow, B-C	
					Paved Kv= 20.3 fps	
0.8	70	0.0800	1.41		Shallow Concentrated Flow, C-D	
					Woodland Kv= 5.0 fps	
3.0					Direct Entry,	
6.0	370	Total				

Summary for Link 1L: EXIST WETLANDS

Inflow Are	ea =	4.540 ac,	38.55% Impervious	s, Inflow Depth >	0.90"	for 2-Y	R event
Inflow	=	4.93 cfs @	2 12.10 hrs, Volun	ne= 0.341	af		
Primary	=	4.93 cfs @	2 12.10 hrs, Volun	ne= 0.341	af, At	ten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EXIST SUBCATCHMENTRunoff Area=4.540 ac 38.55% Impervious Runoff Depth>1.82" Flow Length=370' Tc=6.0 min CN=76 Runoff=10.19 cfs 0.687 af

Link 1L: EXIST WETLANDS

Inflow=10.19 cfs 0.687 af Primary=10.19 cfs 0.687 af

Total Runoff Area = 4.540 ac Runoff Volume = 0.687 af Average Runoff Depth = 1.82" 61.45% Pervious = 2.790 ac 38.55% Impervious = 1.750 ac

Summary for Subcatchment 1S: EXIST SUBCATCHMENT

Runoff = 10.19 cfs @ 12.10 hrs, Volume= 0.687 af, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.29"

Area	(ac) C	N Des	cription			
0.	240	98 Roo	fs, HSG A			
1.	460	76 Grav	vel roads, l	HSG A		
1.	510	98 Pav	ed parking	, HSG A		
1.	030 4	43 Woo	ods/grass o	comb., Fair,	, HSG A	
0.	300	65 Woo	ods/grass o	comb., Fair,	, HSG B	
4.	540	76 Wei	ghted Aver	age		
2.	790	61.4	5% Pervio	us Area		
1.	750	38.5	5% Imperv	vious Area		
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.7	50	0.0200	1.15		Sheet Flow, A-B	
					Smooth surfaces n= 0.011 P2= 2.96"	
1.5	250	0.0200	2.87		Shallow Concentrated Flow, B-C	
					Paved Kv= 20.3 fps	
0.8	70	0.0800	1.41		Shallow Concentrated Flow, C-D	
					Woodland Kv= 5.0 fps	
3.0					Direct Entry,	
6.0	370	Total				

Summary for Link 1L: EXIST WETLANDS

Inflow Ar	rea =	4.540 ac, 3	38.55% Impervious,	Inflow Depth > 1.	82" for 10-YR event
Inflow	=	10.19 cfs @	12.10 hrs, Volume	= 0.687 af	
Primary	=	10.19 cfs @	12.10 hrs, Volume	= 0.687 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: EXIST SUBCATCHMENTRunoff Area=4.540 ac 38.55% Impervious Runoff Depth>2.89" Flow Length=370' Tc=6.0 min CN=76 Runoff=16.16 cfs 1.092 af

Link 1L: EXIST WETLANDS

Inflow=16.16 cfs 1.092 af Primary=16.16 cfs 1.092 af

Total Runoff Area = 4.540 ac Runoff Volume = 1.092 af Average Runoff Depth = 2.89" 61.45% Pervious = 2.790 ac 38.55% Impervious = 1.750 ac

Summary for Subcatchment 1S: EXIST SUBCATCHMENT

Runoff = 16.16 cfs @ 12.09 hrs, Volume= 1.092 af, Depth> 2.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=5.67"

Area	(ac) C	N Des	cription			
0.	240	98 Roo	fs, HSG A			
1.	460	76 Grav	vel roads, l	HSG A		
1.	510	98 Pav	ed parking	, HSG A		
1.	030 4	43 Woo	ods/grass o	comb., Fair,	, HSG A	
0.	300	65 Woo	ods/grass o	comb., Fair,	, HSG B	
4.	540	76 Wei	ghted Aver	age		
2.	790	61.4	5% Pervio	us Area		
1.	750	38.5	5% Imperv	vious Area		
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.7	50	0.0200	1.15		Sheet Flow, A-B	
					Smooth surfaces n= 0.011 P2= 2.96"	
1.5	250	0.0200	2.87		Shallow Concentrated Flow, B-C	
					Paved Kv= 20.3 fps	
0.8	70	0.0800	1.41		Shallow Concentrated Flow, C-D	
					Woodland Kv= 5.0 fps	
3.0					Direct Entry,	
6.0	370	Total				

Summary for Link 1L: EXIST WETLANDS

Inflow /	Area	=	4.540 ac, 3	38.55% Impe	ervious,	Inflow	Depth >	2.8	89" for	50-	YR eve	ent
Inflow	=	=	16.16 cfs @	12.09 hrs,	Volume	=	1.092	af				
Primar	y =	=	16.16 cfs @	12.09 hrs,	Volume	=	1.092	af,	Atten=	0%,	Lag= (0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Proposed Conditions

Prepared by Vanasse Ha	ingen Brustlin, Inc.
HydroCAD® 9.00 s/n 01237	© 2009 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.670	39	>75% Grass cover, Good, HSG A (11S, 12S)
0.750	43	Woods/grass comb., Fair, HSG A (11S)
0.300	65	Woods/grass comb., Fair, HSG B (11S)
1.330	98	Paved parking, HSG A (12S)
0.490	98	Roofs, HSG A (12S)
4.540		TOTAL AREA

PROP CONDITIONS Prepared by Vanasse Hangen Brustlin, In HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD	Type III 24-hr 2-YR Rainfall=2.96"c.Printed 11/8/2010Software Solutions LLCPage 3								
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method									
Subcatchment11S: SUBCATCHMENT11	Runoff Area=2.140 ac 0.00% Impervious Runoff Depth>0.01" Tc=6.0 min CN=44 Runoff=0.00 cfs 0.001 af								
Subcatchment12S: SUBCATCHMENT12	Runoff Area=2.400 ac 75.83% Impervious Runoff Depth>1.38" Tc=6.0 min CN=84 Runoff=4.09 cfs 0.276 af								
Pond 1P: GRAVEL WETLAND	Peak Elev=227.07' Storage=4,640 cf Inflow=4.09 cfs 0.276 af Outflow=2.14 cfs 0.183 af								
Link 1L: EXIST WETLANDS	Inflow=2.14 cfs 0.184 af Primary=2.14 cfs 0.184 af								
Total Runoff Area = 4.540 a	ac Runoff Volume = 0.277 af Average Runoff Depth = 0.73" 59.91% Pervious = 2.720 ac 40.09% Impervious = 1.820 ac								

Prepared by Vanasse Hangen Brustlin, Inc. HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD Software Solutions LLC

Summary for Subcatchment 11S: SUBCATCHMENT 11

Runoff = 0.00 cfs @ 20.00 hrs, Volume= 0.001 af, Depth> 0.01"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=2.96"

Area (a	ac)	CN	Desc	cription			
1.0	90	39	>75%	% Grass co	over, Good	, HSG A	
0.7	50	43	Woo	ds/grass c	omb., Fair,	HSG A	
0.3	00	65	Woo	ds/grass c	omb., Fair,	HSG B	
2.1	40	44	Weig	hted Aver	age		
2.1	40		100.	00% Pervi	ous Area		
Tc I (min)	Lengtl (feet	h :	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry,	

Summary for Subcatchment 12S: SUBCATCHMENT 12

Runoff = 4.09 cfs @ 12.09 hrs, Volume= 0.276 af, D	epth> 1	1.38"
--	---------	-------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=2.96"

	Area (ac	c) CI	V Des	cription				
	0.49	0 9	8 Roo	fs, HSG A				
	1.33	0 9	8 Pave	ed parking	, HSG A			
	0.58	0 3	9 >75°	% Grass co	over, Good	, HSG A		
_	2.40	0 8	4 Weig	ghted Aver	age			
	0.58	0	24.1	7% Pervio	us Area			
	1.82	0	75.8	3% Imperv	vious Area			
	Tc Le	ength	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.0					Direct Entry,		

Summary for Pond 1P: GRAVEL WETLAND

Inflow Area	a =	2.400 ac, 7	75.83% Impe	ervious,	Inflow	Depth >	1.38"	for 2	2-YR (event	
Inflow	=	4.09 cfs @	12.09 hrs,	Volume	=	0.276	af				
Outflow	=	2.14 cfs @	12.26 hrs,	Volume	=	0.183	af, Att	ten= 48	8%, L	.ag= 10.	2 min
Primary	=	2.14 cfs @	12.26 hrs,	Volume	=	0.183	af				

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 227.07' @ 12.27 hrs Surf.Area= 3,091 sf Storage= 4,640 cf

Plug-Flow detention time= 124.1 min calculated for 0.183 af (66% of inflow) Center-of-Mass det. time= 52.5 min (848.7 - 796.2)

Type III 24-hr 2-YR Rainfall=2.96" Printed 11/8/2010 Page 5

Prepared by Vanasse Hangen Brustlin, Inc. HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Sto	rage Storage E	Description		
#1	225.00'	7,88	30 cf Custom	Stage Data (Pri	smatic)Listed below (Recalc)	
Elevatior (feet)	n Su	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
225.00)	1,475	0	0		
226.00)	2,166	1,821	1,821		
226.85)	2,895	2,151	3,971		
228.00)	3,902	3,908	7,880		
Device	Routing	Invert	Outlet Devices			
#1	Primary	225.00'	18.0" Round	Culvert L= 4.0'	RCP, sq.cut end projecting, I	Ke= 0.500
			Outlet Invert= 2	224.80° S= 0.03	5007 CC= 0.900	
#2	Device 1	226.85'	2.0' long Shar	p-Crested Rect	tangular Weir X 3.00	
			2 End Contract	tion(s) 0.5' Cre	st Height	
#3	Primary	227.45'	8.0' long x 5.0)' breadth Broa	d-Crested Rectangular Weir	
			Head (feet) 0.2	20 0.40 0.60 0	0.80 1.00 1.20 1.40 1.60 1.80) 2.00
			2.50 3.00 3.50	J 4.00 4.50 5.0	00 5.50	
			Coef. (English)	2.34 2.50 2.7	0 2.68 2.68 2.66 2.65 2.65 2	2.65
			2.65 2.67 2.66	5 2.68 2.70 2.7	74 2.79 2.88	
Primary	OutFlow M	lax=2.10 cfs (2 12.26 hrs HW	/=227.07' (Free	e Discharge)	

-**1=Culvert** (Passes 2.10 cfs of 9.78 cfs potential flow) **1=Culvert** (Passes 2.10 cfs of 9.78 cfs potential flow) **1=Culvert** (Passes 2.10 cfs @ 1.62 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link 1L: EXIST WETLANDS

Inflow Area	a =	4.540 ac, 4	10.09% Imp	ervious,	Inflow De	epth > 0	.49" fo	r 2-Y	R event	
Inflow	=	2.14 cfs @	12.26 hrs,	Volume	=	0.184 af				
Primary	=	2.14 cfs @	12.26 hrs,	Volume	=	0.184 af	, Atten=	0%,	Lag= 0.	0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

PROP CONDITIONS Prepared by Vanasse Hangen Brustlin, In HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD	Type III 24-hr 10-YR Rainfall=4.29"nc.Printed 11/8/2010O Software Solutions LLCPage 6
Time span=5.00- Runoff by S Reach routing by Stor-Ind+Tra	-20.00 hrs, dt=0.05 hrs, 301 points SCS TR-20 method, UH=SCS ans method - Pond routing by Stor-Ind method
Subcatchment11S: SUBCATCHMENT11	Runoff Area=2.140 ac 0.00% Impervious Runoff Depth>0.17" Tc=6.0 min CN=44 Runoff=0.12 cfs 0.030 af
Subcatchment12S: SUBCATCHMENT12	Runoff Area=2.400 ac 75.83% Impervious Runoff Depth>2.46" Tc=6.0 min CN=84 Runoff=7.23 cfs 0.492 af
Pond 1P: GRAVEL WETLAND	Peak Elev=227.31' Storage=5,397 cf Inflow=7.23 cfs 0.492 af Outflow=6.50 cfs 0.399 af
Link 1L: EXIST WETLANDS	Inflow=6.50 cfs 0.429 af Primary=6.50 cfs 0.429 af
Total Runoff Area = 4.540 a	ac Runoff Volume = 0.522 af Average Runoff Depth = 1.38" 59.91% Pervious = 2.720 ac 40.09% Impervious = 1.820 ac

Prepared by Vanasse Hangen Brustlin, Inc. HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD Software Solutions LLC

Summary for Subcatchment 11S: SUBCATCHMENT 11

Runoff = 0.12 cfs @ 12.43 hrs, Volume= 0.030 af, Depth> 0.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.29"

Area	(ac)	CN	Desc	cription							
1.	090	39	>75%	75% Grass cover, Good, HSG A							
0.	750	43	Woo	ds/grass c	omb., Fair,	HSG A					
0.	300	65	Woo	ds/grass c	omb., Fair,	HSG B					
2.	2.140 44 Weighted Average										
2.140 100.00% Pervious Area					ous Area						
Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0						Direct Entry,					

Summary for Subcatchment 12S: SUBCATCHMENT 12

Runoff = 7.23 cfs @ 12.09 hrs, Volume= 0.492 af, Depth> 2.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.29"

	Area ((ac)	CN	Desc	cription			
	0.4	490	98	Roof	s, HSG A			
	1.3	330	98	Pave	ed parking	, HSG A		
	0.	580	39	>75%	% Grass co	over, Good	, HSG A	
	2.4	400	84	Weig	hted Aver	age		
0.580 24.17% Pervious Area					7% Pervio	us Area		
	1.820 75.83% Impervious Area					ious Area		
	Тс	Leng	th	Slope	Velocity	Capacity	Description	
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry,	

Summary for Pond 1P: GRAVEL WETLAND

Inflow Area	ı =	2.400 ac,	75.83% Impe	ervious,	Inflow Depth >	2.4	6" for	10-Y	R event
Inflow	=	7.23 cfs @	12.09 hrs,	Volume	= 0.492	2 af			
Outflow	=	6.50 cfs @	12.13 hrs,	Volume	= 0.39	9 af, 7	Atten=	10%,	Lag= 2.5 mir
Primary	=	6.50 cfs @	12.13 hrs,	Volume	= 0.39	9 af			

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 227.31' @ 12.13 hrs Surf.Area= 3,298 sf Storage= 5,397 cf

Plug-Flow detention time= 83.9 min calculated for 0.399 af (81% of inflow) Center-of-Mass det. time= 32.9 min (815.7 - 782.9)

Type III 24-hr 10-YR Rainfall=4.29" Printed 11/8/2010 Page 8

Prepared by Va	nasse Ha	ingen B	rustlin, In	C.	
HydroCAD® 9.00	s/n 01237	© 2009	HydroCAD	Software S	olutions LLC

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	225.00)' 7,88	30 cf Custom	Stage Data (Pris	smatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store	
	() 				
225.0	0	1,475	0	0	
226.0	0	2,166	1,821	1,821	
226.8	5	2,895	2,151	3,971	
228.0	0	3,902	3,908	7,880	
Device	Routing	Invert	Outlet Device:	S	
#1	Primary	225.00'	18.0" Round	Culvert L= 4.0'	RCP, sq.cut end projecting, Ke= 0.500
	2		Outlet Invert=	224.80' S= 0.05	500 '/' Cc= 0.900
			n= 0.009 Cor	rugated PE, smoo	oth interior
#2	Device 1	226.85'	2.0' long Sha	rp-Crested Rect	angular Weir X 3.00
			2 End Contrac	ction(s) 0.5' Cres	st Height
#3	Primarv	227.45'	8.0' lona x 5.	0' breadth Broa	d-Crested Rectangular Weir
	,		Head (feet) 0	.20 0.40 0.60 0	.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.5	50 4.00 4.50 5.0	0 5.50
			Coef (English) 234 250 27	0 2 68 2 68 2 66 2 65 2 65 2 65
			2 65 2 67 2 6	6 2 68 2 70 2 7	74 2 79 2 88
			2.00 2.07 2.0		
Primary	OutFlow I Ivert (Pass	Max=6.37 cfs (ses 6.37 cfs of	① 12.13 hrs HV 10.61 cfs poter	V=227.30' (Free ntial flow)	e Discharge)

¹ **−2=Sharp-Crested Rectangular Weir**(Weir Controls 6.37 cfs @ 2.45 fps) **−3=Broad-Crested Rectangular Weir**(Controls 0.00 cfs)

Summary for Link 1L: EXIST WETLANDS

Inflow Area	a =	4.540 ac, 4	0.09% Imp	ervious,	Inflow D	epth > 1	.13"	for 10-	YR even	t
Inflow	=	6.50 cfs @	12.13 hrs,	Volume	=	0.429 a	f			
Primary	=	6.50 cfs @	12.13 hrs,	Volume	=	0.429 a	f, Atte	en= 0%,	Lag= 0.0) min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

PROP CONDITIONS Prepared by Vanasse Hangen Brustlin, In HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD	Type III 24-hr 50-YR Rainfall=5.67"c.Printed 11/8/2010Software Solutions LLCPage 9
-Time span=5.00 Runoff by S Reach routing by Stor-Ind+Tra	20.00 hrs, dt=0.05 hrs, 301 points CS TR-20 method, UH=SCS ans method - Pond routing by Stor-Ind method
Subcatchment11S: SUBCATCHMENT11	Runoff Area=2.140 ac 0.00% Impervious Runoff Depth>0.53" Tc=6.0 min CN=44 Runoff=0.72 cfs 0.095 af
Subcatchment12S: SUBCATCHMENT12	Runoff Area=2.400 ac 75.83% Impervious Runoff Depth>3.66" Tc=6.0 min CN=84 Runoff=10.57 cfs 0.732 af
Pond 1P: GRAVEL WETLAND	Peak Elev=227.44' Storage=5,847 cf Inflow=10.57 cfs 0.732 af Outflow=9.68 cfs 0.638 af
Link 1L: EXIST WETLANDS	Inflow=10.36 cfs 0.732 af Primary=10.36 cfs 0.732 af
Total Runoff Area = 4.540 a	ac Runoff Volume = 0.826 af Average Runoff Depth = 2.18" 59.91% Pervious = 2.720 ac 40.09% Impervious = 1.820 ac

Prepared by Vanasse Hangen Brustlin, Inc. HydroCAD® 9.00 s/n 01237 © 2009 HydroCAD Software Solutions LLC

Summary for Subcatchment 11S: SUBCATCHMENT 11

Runoff = 0.72 cfs @ 12.16 hrs, Volume= 0.095 af, Depth> 0.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=5.67"

Area	(ac)	CN	Desc	cription								
1.	090	39	>75%	75% Grass cover, Good, HSG A								
0.	750	43	Woo	Voods/grass comb., Fair, HSG A								
0.	300	65	Woo	ds/grass c	comb., Fair,	, HSG B						
2.140 44 Weighted Average												
2.140 100.00% Pervious Area					ous Area							
Тс	Leng	th	Slope	Velocity	Capacity	Description						
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)							
6.0						Direct Entry,						

Summary for Subcatchment 12S: SUBCATCHMENT 12

Runoff	=	10.57 cfs @	12.09 hrs,	Volume=	0.732 af,	Depth> 3.66"
--------	---	-------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=5.67"

A	Area (ac)	CN	Desc	cription			
	0.490	98	Roof	fs, HSG A			
	1.330	98	Pave	ed parking	, HSG A		
	0.580	39	>75%	% Grass co	over, Good	, HSG A	
	2.400	84	Weig	ghted Aver	age		
	0.580		24.1	7% Pervio	us Area		
	1.820		75.8	3% Imperv	ious Area/		
	Tc Ler	ngth	Slope	Velocity	Capacity	Description	
(n	nin) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)	•	
	6.0					Direct Entry,	

Summary for Pond 1P: GRAVEL WETLAND

Inflow Area	a =	2.400 ac,	75.83% Imperv	vious, Inflow D	Depth > 3.6	6" for 50-	YR event
Inflow	=	10.57 cfs @	12.09 hrs, V	'olume=	0.732 af		
Outflow	=	9.68 cfs @	12.13 hrs, V	'olume=	0.638 af,	Atten= 8%,	Lag= 2.1 min
Primary	=	9.68 cfs @	12.13 hrs, V	'olume=	0.638 af		-

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 227.44' @ 12.13 hrs Surf.Area= 3,415 sf Storage= 5,847 cf

Plug-Flow detention time= 66.4 min calculated for 0.636 af (87% of inflow) Center-of-Mass det. time= 28.1 min (801.6 - 773.5)

Type III 24-hr 50-YR Rainfall=5.67" Printed 11/8/2010 Page 11

Prepared by Var	nasse Ha	ngen Br	ustlin, In	с.	
HydroCAD® 9.00	s/n 01237	© 2009 ⊢	IydroCAD	Software \$	Solutions LLC

Volume	Inver	t Avail.Sto	rage Storage D	escription		
#1	225.00	[,] 7,88	30 cf Custom S	Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevatio (feet	n S	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
225.0 226.0 226.8 228.0	0 0 5 0	1,475 2,166 2,895 3,902	0 1,821 2,151 3,908	0 1,821 3,971 7,880		
Device	Routing	Invert	Outlet Devices			
#1	Primary	225.00'	18.0" Round (Outlet Invert= 2 n= 0.009 Corru	Culvert L= 4.0 24.80' S= 0.0 ugated PE, smo	' RCP, sq.cut end projecting, Ke= 0.8 500 '/' Cc= 0.900 both interior	500
#2	Device 1	226.85'	2.0' long Shar 2 End Contract	o-Crested Rec	t angular Weir X 3.00 est Height	
#3	Primary	227.45'	8.0' long x 5.0 Head (feet) 0.2 2.50 3.00 3.50 Coef. (English) 2.65 2.67 2.66	breadth Broa 20 0.40 0.60 0 0 4.00 4.50 5 2.34 2.50 2.7 2 2.68 2.70 2	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 00 5.50 70 2.68 2.68 2.66 2.65 2.65 2.65 74 2.79 2.88	
Primary	OutFlow I	Max=9.47 cfs (@ 12.13 hrs HW	=227.44' (Fre	e Discharge)	

-1=Culvert (Passes 9.47 cfs of 11.05 cfs potential flow) -2=Sharp-Crested Rectangular Weir(Weir Controls 9.47 cfs @ 2.86 fps) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Link 1L: EXIST WETLANDS

Inflow Area	a =	4.540 ac, 4	0.09% Imp	ervious,	Inflow	Depth >	1.9	4" for 50-	YR ever	nt
Inflow	=	10.36 cfs @	12.13 hrs,	Volume	=	0.732	af			
Primary	=	10.36 cfs @	12.13 hrs,	Volume	=	0.732	af, /	Atten= 0%,	Lag= 0.	0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Appendix B: Hydraulic Calculations

- ► Storm Drainage Piping Calculations
- ► Riprap Sizing Calculations

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

Storm Drainage Piping Calculations

Vanasse Hangen Brustlin, Inc.

Transportation Land Development Environmental Services 6 Bedford Farms Drive, Bedford, NH

Storm Drainage Computations

Name:	Proposed Retail Development	Proj. No.:	51990.35
	Rochester, NH	Date:	11/3/2010
Client:	GB New Hampshire 2, LLC	Computed by:	DHF
		Checked by:	BAA

	LOCA	ATION	AREA	С	СхА	SUM	FLOW	TIME (MIN)	i*			DESIGN			C	CAPACITY				PROFILE			
DESCRIPTION	FROM	то	(AC.)			СхА	PIPE	CONC		Q	V	n	PIPE	SLOPE	Q full	V full	LENGTH	FALL	RIM	INV	INV	W.S.E.	Freeboard
								TIME		cfs	fps		SIZE		ft^3/s	ft/s	ft	ft		UPPER	LOWER	ft	ft
	CB 10	DMH 7	0.67	0.63	0.42	0.42	0.30	6.0	5.1	2.1	3.6	0.011	12	0.0050	3.0	3.8	64	0.32	230.7	228.2	227.9	228.0	2.7
	DMH 7	CB 5				0.42	0.28	6.0	5.1	2.1	3.6	0.011	12	0.0050	3.0	3.8	60	0.30	231.4	227.9	227.6	227.7	3.7
	RD A	CB 8	0.18	0.90	0.17	0.17	0.20	6.0	5.1	0.8	2.8	0.011	10	0.0050	1.8	3.4	34	0.17	232.0	228.0	227.8	227.9	4.1
	CB 8	CB 7	0.37	0.82	0.31	0.47	0.28	6.0	5.1	2.4	3.7	0.011	12	0.0050	3.0	3.8	62	0.31	230.7	227.9	227.6	227.7	3.0
	CB 7	DMH 4	0.28	0.85	0.24	0.71	0.47	6.0	5.1	3.6	4.0	0.011	15	0.0050	5.4	4.4	113	0.57	230.7	227.6	227.0	227.3	3.4
	RD B	CB 6	0.30	0.90	0.27	0.27	0.16	6.0	5.1	1.4	3.2	0.011	10	0.0050	1.8	3.4	30	0.15	232.0	228.0	227.9	227.9	4.1
	CB 6	DMH 4	0.19	0.82	0.15	0.43	0.55	6.0	5.1	2.2	3.6	0.011	12	0.0050	3.0	3.8	118	0.59	230.6	227.6	227.0	227.4	3.2
	CB 5	DMH 4	0.16	0.88	0.14	0.14	0.29	6.0	5.1	0.7	2.6	0.011	12	0.0050	3.0	3.8	46	0.23	231.3	227.3	227.1	227.2	4.1
	DMH 7	FES 2				1.28	0.12	6.0	5.1	6.5	4.7	0.011	18	0.0050	8.8	5.0	34	0.17	231.6	227.0	226.8	226.7	4.9

Design Parameters: 25 Year Storm

k_e=

0.5

Riprap Sizing Calculations

Computations

Sheet 1 of 1

Project #:	51990.35						
Project:	Proposed Reta	il Development					
Location:	Rochester, NH						
Calculated by:	DHF	Date:	11/3/2010				
Checked by:	BAA	Date:	11/5/2010				
Title:	Riprap Outlet	Riprap Outlet Protection Sizing					

Source: New Hampshire Stormwater Manual, Volume 2, Post-Construction Best Management Practices Selection & Design NHDES, December 2008, Section 4-6.6. p. 172.

0.5

6.2

1.2

15.0

Apron Depth, ft

Apron Depth, in

Appendix C: Support Data

- ► Base Calculations (GRV, WQV, & WQF)
- ► BMP Work Sheets
- ► FEMA Floodplain Map
- ► Rainfall Data

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

Base Calculations (GRV, WQV, & WQF)

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

Groundwater Recharge Volume (GRV) Calculation

0.07	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
-	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
-	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ac	Area of HSG D soil or impervious cover that was replaced by impervi	0.0"
0.40	inches	Rd = weighted groundwater recharge depth	
0.028	ac-in	GRV = AI * Rd	
102	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

**The colored cells contain formulas and cannot be edited.

Designer's Notes:	Project will have a net decrease in impervious area of approximately 1.2 ac.						
(i.e. pavement, gravel lots, roofs, etc)							

NHDES Alteration of Terrain Last Revised: January 2010

General Calculations - WQV and WQF

This worksheet may be useful when designing a BMP that does not fit into one of the specific worksheets already provided. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

2.40	ac	Area (A) draining to the system
1.82	ac	Impervious area draining to the system
0.76	decimal	Percent Impervious area (I) draining to the pond
0.73	unitless	Runoff coefficient (Rv) = 0.05 + (0.9 x I)
1.76	ac-in	WQV= 1" x Rv x A
6,382	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF) - note you must first calculate the WQV using the above calculations

1	inches	P is the rainfall. For WQF in NH, $P = 1$ ".
0.73	inches	Q is the water quality depth. $Q = WQV/A$
97	unitless	CN is the unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.3	inches	S is the potential maximum retention. $S = (1000/CN) - 10$
0.055	inches	Ia is the initial abstraction. $Ia = 0.2S$
6.0	minutes	Time of Concentration
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
1.923	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$

Designer's Notes:

BMP Worksheets

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

STORMWATER WETLAND DESIGN CRITERIA (Env-Wq 1508.04)

	Enter the ty	pe of stormwater wetland (e.g., gravel wetland) and the node name in the drainage	analysis, if applicable
2.40	ac	Area (A) draining to the pond	
1.82	ac	Impervious area draining to the pond	
0.76	decimal	Percent Impervious area (I) draining to the pond	
0.73	unitless	Runoff coefficient (Rv) = $0.05 + (0.9 \text{ x I})$	
1.76	ac-in	WQV=1" x Rv x A	
6,382	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
638	cf	10% x WQV (check calc for sediment forebay volume)	
2,872	cf	45% x WQV (check calc for treatment bay volume, if a gravel wetland is proposed)	
3,191	cf	50% x WQV (check calc for ext. detention volume, if extended detention	on proposed)
647	cf	Sediment forebay volume	$\leftarrow \geq 10\% WQV$
3,971	cf	If a Gravel Wetland: Volume of Treatment bay 1 (V_{TB})	$\leftarrow \geq 45\% WQV$
3,971	cf	If a Gravel Wetland: Volume of Treatment bay 2 (V_{TB})	$\leftarrow \geq 45\% WQV$
8,589	cf	Permanent pool volume (V_P)	
	cf	Extended detention volume (V_{ED}), if applicable	$\leftarrow \leq 50\%$ WQV
8,589	cf	$V_{P} + V_{ED}$	$\leftarrow \geq WQV$
-	cfs	If Ext. Detention is provided: <i>design</i> Qavg = V_{ED} / 24 hrs * (1hr / 3600 sec)	
-	cfs	If Ext. Detention: 2 * <i>design</i> Qavg (use to check Q _{max} below)	
	cfs	If Ext. Detention: What is the Q_{ED} ? (attach table to worksheet) ¹	← <2Qavg
-	hours	If Ext. Detention: Actual drawdown time = $2V_{ED}/Q_{max}$	← ≥ 24-hrs
3.00	:1	Pond side slopes	← <u>></u> 3:1
2.00	ft	Maximum depth of permanent pool	← <u><</u> 8 ft
227.00	ft	Elevation of the permanent pool (E_{PP})	
227.72	ft	Peak elevation of the 50-year storm event (E_{50})	
0.7	ft	Depth above the permanent pool ($E_{50} - E_{PP}$)	← <u><</u> 4'
96.00	ft	Length of the flow path between the inlet and outlet at mid-depth	
32.00	ft	Average Width ([average of the top width + average bottom width]/2)	
3.0	:1	Length to Average Width ratio	← ≥ 3:1
YES	Yes/No	The perimeter should be curvilinear.	
YES	Yes/No	The inlet and outlet should be located as far apart as possible.	
	Yes/No		
If no	state why:		
Trash	Grate	What mechanism is proposed to prevent the outlet structure from cloggin	ng (applicable for
		orifices/weirs with a dimension of ≤ 6 ")?	
227.7	ft	Peak elevation of the 50-year storm event (E_{50})	
228.00	ft	Berm elevation of the pond	
YES		$E_{50} \leq$ the berm elevation?	ß yes
Qualified professional that developed the planting plan:			
Name, Profession: R. Gordon Leedy, AICP, ASLA, LEED-AP			

Type/Node Name: **Gravel Wetland**

*Design criteria in bold font, located in the right margin, are requirements of Env-Wq 1508.04

**The colored cells contain formulas and cannot be edited.

1. Using the Stage-Discahrge table, find the elevation at which the V_{ED} is achieved and read off the Q_{ED}

FEMA Floodplain Map

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

MAP NUMBER 33017C0211D

EFFECTIVE DATE MAY 17, 2005

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the floot that has a 1% chance of being equaled or exceeded in any given year. The Spec Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Are of Special Flood Hazard include Zones A, A, E, AH, AO, AR, A99, V, and VE. The Ba Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A

No Base Flood Elevations determined. Base Flood Elevations determined. ZONE AE

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flo ZONE Elevations determined.

Flood depths of 1 to 3 feet (usually sheet flow on sloping terra average depths determined. For areas of alluvial fan flooding, veloci also determined. ZONE

Special Flood Hazard Area formerly protected from the 1% ann chance flood by a flood control system that was subseque decertified. Zone AR indicates that the former flood control system being restored to provide protection from the 1% annual chance greater flood. ZONE AR

Area to be protected from 1% annual chance flood by a Fed-flood protection system under construction; no Base Flood Elevati ZONE A99

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Fl

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevation

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must kept free of encroachment so that the 1% annual chance flood can be carried withor substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

Areas of 0.2% annual chance flood; areas of 1% annual chance floo with average depths of less than 1 foot or with drainage areas less tha 1 square mile; and areas protected by levees from 1% annual chan flood.

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

ZONE X

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Are

This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On-Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at www.msc.fema.gov

MAP NUMBER 33017C0203D

EFFECTIVE DATE MAY 17, 2005

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the floo that has a 1% chance of being equaled or exceeded in any given year. The Speci Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Are of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Ba Flood Elevation is the water-surface elevation of the 1% annual chance flood. No Base Flood Elevations determined ZONE ZONE AF Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flo ZONE levations determined Flood depths of 1 to 3 feet (usually sheet flow on sloping terrai average depths determined. For areas of alluvial fan flooding, velocit also determined. ZONE AC Special Flood Hazard Area formerly protected from the 1% ann chance flood by a flood control system that was subsequer decertified. Zone AR indicates that the former flood control system being restored to provide protection from the 1% annual chance greater flood. ZONE AR Area to be protected from 1% annual chance flood by a Fede ZONE A99 lood protection system under construction; no Base Flood E ned. ZONE V Coastal flood zone with velocity hazard (wave action); no Base Fl ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Eleva FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must likept free of encroachment so that the 1% annual chance flood can be carried witho substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance floo with average depths of less than 1 foot or with drainage areas less tha 1 square mile; and areas protected by levees from 1% annual chance flood. ZONE X OTHER AREAS Areas determined to be outside the $0.2\,\%$ annual chance floodplain. ZONE > Areas in which flood hazards are undetermined, but possible. ZONE D $\vee / /$ COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS $\langle \cdot \rangle$ OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Area

WAKE

This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On-Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at www.msc.fema.gov

Rainfall Data

VHB Vanasse Hangen Brustlin, Inc.

(this page intentionally left blank)

6-15

"ODELL",2.40,2.48,3.40,3.86,4.73,4.99,5.70 "ORANGE", 2.30, 2.63, 3.58, 4.03, 4.82, 5.28, 5.90 "ORFORD", 2.30, 2.55, 3.48, 3.95, 4.73, 5.13, 5.77 "OSSIPEE", 2.50, 2.92, 3.82, 4.30, 5.16, 5.52, 6.16 "PELHAM", 2.60, 3.01, 3.87, 4.35, 5.19, 5.80, 6.47 "PEMBROKE", 2.40, 2.89, 3.74, 4.23, 5.04, 5.61, 6.24 "PETERBOROUGH", 2.40, 2.85, 3.77, 4.22, 5.01, 5.64, 6.30 "PIERMONT", 2.30, 2.52, 3.48, 3.93, 4.73, 5.10, 5.75 "PINKHAM'S GRANT", 3.00, 3.80, 4.70, 5.20, 6.15, 6.60, 7.20 "PITTSBURG", 2.30, 2.43, 3.30, 3.70, 4.40, 4.85, 5.15 "PITTSFIELD", 2.50, 2.90, 3.74, 4.24, 5.06, 5.59, 6.22 "PLAINFIELD", 2.30, 2.59, 3.53, 4.01, 4.75, 5.23, 5.85 "PLAISTOW", 2.60, 3.05, 3.87, 4.36, 5.20, 5.79, 6.47 "PLYMOUTH", 2.40, 2.70, 3.63, 4.15, 4.90, 5.31, 5.94 "PORTSMOUTH", 2.60, 3.06, 3.84, 4.37, 5.20, 5.75, 6.45 "RANDOLPH", 2.70, 3.30, 3.80, 4.60, 5.20, 6.10, 6.40 "RAYMOND", 2.50, 2.98, 3.80, 4.31, 5.13, 5.70, 6.37 "RICHMOND", 2.40, 2.83, 3.77, 4.21, 5.01, 5.62, 6.30 "RINDGE",2.40,2.88,3.81,4.24,5.04,5.67,6.36 "ROCHESTER", 2.50, 2.96, 3.75, 4.29, 5.13, 5.63, 6.29 "ROLLINSFORD",2.50,3.00,3.78,4.33,5.16,5.67,6.36 "ROXBURY", 2.40, 2.79, 3.72, 4.17, 4.94, 5.56, 6.26 "RUMNEY", 2.40, 2.63, 3.59, 4.10, 4.85, 5.25, 5.89 "RYE",2.60,3.08,3.86,4.38,5.22,5.77,6.48 "SALEM", 2.50, 3.03, 3.87, 4.35, 5.19, 5.80, 6.47 "SALISBURY", 2.40, 2.77, 3.66, 4.14, 4.93, 5.45, 6.08 "SANBORNTON", 2.40, 2.78, 3.68, 4.10, 4.97, 5.44, 6.05 "SANDOWN", 2.50, 3.01, 3.83, 4.33, 5.16, 5.74, 6.42 "SANDWICH", 2.50, 2.95, 3.79, 4.38, 5.08, 5.50, 6.15 "SARGENT'S PURCHASE", 2.90, 3.80, 4.70, 5.20, 6.10, 6.60, 7.20 "SEABROOK", 2.60, 3.09, 3.88, 4.39, 5.22, 5.81, 6.52 "SECOND COLLEGE GRANT", 2.30, 2.48, 3.38, 3.84, 4.67, 4.95, 5.50 "SHARON", 2.40, 2.88, 3.79, 4.23, 5.03, 5.67, 6.35 "SHELBURNE", 2.70, 3.50, 4.20, 5.05, 5.40, 6.20, 6.80 "SOMERSWORTH", 2.50, 2.98, 3.77, 4.31, 5.15, 5.66, 6.33 "SOUTH HAMPTON", 2.60, 3.06, 3.87, 4.38, 5.21, 5.80, 6.49 "SPRINGFIELD", 2.30, 2.66, 3.59, 4.06, 4.82, 5.33, 5.95 "STARK", 2.40, 2.60, 3.44, 3.95, 4.85, 5.10, 5.90 "STEWARTSTOWN", 2.30, 2.44, 3.30, 3.73, 4.51, 4.88, 5.30 "STODDARD", 2.40, 2.77, 3.68, 4.14, 4.92, 5.51, 6.19 "STRAFFORD", 2.50, 2.94, 3.74, 4.27, 5.11, 5.61, 6.26 "STRATFORD", 2.40, 2.47, 3.38, 3.81, 4.70, 4.97, 5.60 "STRATHAM", 2.60, 3.05, 3.84, 4.36, 5.19, 5.75, 6.44 "SUCCESS", 2.50, 3.20, 3.80, 4.50, 5.10, 5.60, 6.15 "SUGAR HILL", 2.40, 2.55, 3.46, 3.93, 4.81, 5.11, 5.80 "SULLIVAN", 2.30, 2.77, 3.70, 4.15, 4.92, 5.52, 6.21 "SUNAPEE", 2.30, 2.67, 3.60, 4.07, 4.82, 5.35, 5.98 "SURRY", 2.30, 2.75, 3.68, 4.14, 4.89, 5.48, 6.18 "SUTTON", 2.30, 2.73, 3.63, 4.12, 4.88, 5.43, 6.06 "SWANZEY", 2.40, 2.80, 3.74, 4.18, 4.97, 5.58, 6.27 "TAMWORTH", 2.50, 3.05, 3.96, 4.55, 5.20, 5.95, 6.22 "TEMPLE", 2.40, 2.88, 3.80, 4.24, 5.04, 5.68, 6.35 "THOMPSON & MESERVE'S PURCHASE", 3.00, 3.60, 4.50, 5.00, 5.90, 6.45, 7.10 "THORNTON", 2.50, 2.85, 3.70, 4.30, 4.95, 5.34, 5.95 "TILTON", 2.40, 2.80, 3.70, 4.15, 4.97, 5.45, 6.08 "TROY", 2.40, 2.83, 3.76, 4.20, 4.99, 5.62, 6.29 "TUFTONBORO", 2.50, 2.92, 3.80, 4.20, 5.15, 5.52, 6.16 "UNITY", 2.30, 2.67, 3.60, 4.07, 4.80, 5.36, 6.00 "WAKEFIELD", 2.40, 2.92, 3.78, 4.20, 5.16, 5.52, 6.16 "WALPOLE", 2.30, 2.73, 3.66, 4.12, 4.86, 5.44, 6.13 "WARNER", 2.40, 2.77, 3.66, 4.15, 4.93, 5.48, 6.12